vergence of P’(z,t) since each term of the series rep-
resenting P(z,t) is in absolute value equal to or less
than the corresponding terms of the series repre-
senting P’(x,t).

It is a simple matter now to show that the series
representations of OP’;/0t. OP’/dt and O°P’/dx?
are all uniformly convergent. The series repre-
sentation of 0P,/0t is equal to the sum of the two
uniformly convergent series representing HP and
—HP,. The terms of the series representing 0P’/
Ot are in absolute value less than the terms of the
uniformly convergent series representing OP,/0t,
hence the series representing dP’/d¢ is uniformly
convergent by the M-test. Finally, the series
representing 02P’/dxz? is equal to the sum of the two

VISCOSITY-CONCENTRATION A
RELATIONSHIPS FOR SUS
PARTICLES IN NE

By T.

It was established by Bingham? that plots of
fluidity against concentration tend to be linear over
considerable concentration ranges, whereas viscos-
ity plots are always curved. Many illustrations,
for proteins, have been given by Treffers.*? De-
Bruijn* and Vand®® have made use of such plots.
In general, however, the fluidity function has re-

" ceived little attention, despite the first order recip-
rocal relationship between the linear equation ¢
=1 — 2.5C, (I) and the Einstein equation asusu-
ally written n/n = 1 + 2.5C, (II). It is the pur-
pose of this paper to show that the consensus of
present theoretical and empirical equations for the
flow of suspensions of rigid spherical particles alone
makes I a closer approximation than II, and by
re-examination of available data to support this
conclusion to the extent it may even be suggested
that equation I and its exact reciprocal, n/9 =
14 2.5Cy + 6.25C,% 4 ... (III) may describe ac-
curately the flow of suspensions of rigid spheres in
Newtonian liquids at low and moderate concentra-
tions.

Collected Viscosity Equations and Their
Reciprocal or Fluidity Forms

Various equations relating viscosity to concentra-
tion for suspensions of spheres are listed in Table I,
together with the reciprocal or fluidity forms of each.
For ready comparison all equations are given in
Table I as powerseries, Y = 1+ aCy + bCy2 + ¢Cy?

(1) Naval Research Laboratory, Washington, D. C.

(2) E. C. Bingham, “Fluidity and Plasticity,” McGraw-Hill Book
Co., Inc., New York, N. Y., 1922, .

(3) H. P. Treffers, J. Am. Chem. Soc., 62, 1405 (1940).

(4) H. DeBruijn, Rec. trav. chim., 61, 863 (1942); Proceedings of the
International Congress of Rheology, Amsterdam, 1949, p. II-95.

(5) V. Vand, (a) Tuis JOURNAL, 52, 277 (1948); (b) 52, 300 (1948).

uniformly convergent series representing (1/a)-
(@P’/dt) and (1/a)(Va/V:1)(OP,/dt). We have
shown then that the term-by-term differentiation
of the series representing P’ and P’,;, both with re-
spect to r and ¢ (twice with respect to z) is justified;
furthermore, we have shown that the solutions
P’(z,t) and Py(z,t) satisfy the partial differential
equations—equations 1B and 2B. ‘

That the solutions satisfy the boundary condi-
dions—equations 3B and 4B—may be verified by
inspection. The authors have verified that the
solutions also satisfy the initial conditions—equa-
tions 5B and 6B—by substitution; consequently,
the validity of the series of residues is established.
Furthermore, the solution is unique.

D FLUIDITY-CONCENTRATION
ENSIONS OF SPHERICAL
TONIAN LIQUIDS

. Forp!

+ .. .,where Y designates either relative viscosity,
/70, or-relative fluidity, ¢/, and Cy is the volume
fraction of the dispersed phase. The several pairs
of equations are exactly equivalent and are ob-
tained, the one from the other, by long division.
The over-all purpose of the table is to show that
without regard to theoretical or experimental back-
ground all of these equations are more nearly linear
in the fluidity form.

It is seldom noted that Einstein’s derivation?
really led to the equation n/ny = (1 + 0.5C,)/
(1 — Cy)? from which the series given in Table I
are derived. This equation takes no account of
interactions between particles. It applies, there-
fore, over concentration ranges in which interac-
tions can be disregarded; but these ranges may be
considerably wider than those to which the simpli-
fied form, II, applies. :

Interactions between particles have been con-
sidered by various authors, in particular Simha and
co-workers (¢f. ref. 8), DeBruijn,* and Vand.®
DeBruijn,* with Burgers,® give a derivation which
is unique in utilizing the fluidity function and is
semi-independent of Einstein’s. DeBruijn obtains
&/ = 1 — 2.5Cy + 2.5kC,2. He evaluates the
constant £ in an empirical way by making ¢/¢ =
0 at Cy = 0.74, the volume fraction occupied by

(6) A catalog of viscositj; equations converted to power series is
also given by Bredée and de Booys. Their list includes several earlier
forms omitted here. H. L. Bredee and J. deBooys, Kolloid Z., 79, 31
(1?3)7).1. Einstein, (a) Ann. Physik, 19, 286 (1906); (b) 84, 591 (1911).

(8) R. Simha, (a) THIS JOURNAL, 44, 25 (1940); (b) J. Applied
Physics, 28, 1020 (1952).

(9) J. M. Burgers, “First and Second Report on Viscosity and

Plasticity,” N. V. Noord-Hollandsche Uetgeversmastschappij, Amster-
dam, Holland, 1938.



L1ABLE L

¢(PRESSIONS RELATING RELATIVE VISCOSITY AND RELATIVE FLuIpITY TO VOLUME CONCENTRATION FOR SUSPENSIONS OF .
: Rigip SPHERICAL PARTICLES

Author

Theoretical equati -
Fluidity form

¢/do = 1 — 2.5C, + 2.25C,* — 1.25C,3..
1—2.5C, + 1.552C,* ...
1 —2.5C, — 1.099C.,2 ...
1—2.5C, +2.52C,% — 6.94C.,'/2. .
1—2.5C, — (1.25t0 0.50)C\2 ...

Empirical equati

Year Ref. Viscosity form
nstein 1906-11  (7) wn/mo =1 + 2.5C, + 4C.* + 5.5C3 ...
sBruijn 1942 (4) 14+2.5C, +4.7C2+ 7.77C3 ...
wd - 1948  (5a) 1+ 2.5C, 4 7.349C,2 ...
mha® 1952 (8b) 1 4 2.5C, + 3.73C,* + 6.94C, /2.,
ynch® 1956  (10) 1+ 2.5C, +/(7.510 6.75)Cy? ...
rhenius 1887  (11) 1+42.5C, + 3.125C,* 4 2.60C.3. .
wnd 1948  (5b) 14+2.5C, +7.17C,* 4+ 16.2C,3 . ..
sbinson 1949  (16) 1+2.5C, + 4.6C.* + 8.4C,*

s Both Simha’s and Kynch’s second and higher
ven are for dilute solutions. See text.

ose-packed uniform spheres. This makes k =
6209 and gives the equations attributed to|De-
ruijn in the table. It will be seen in the discus-
on of experimental results, however, that for rigid
wticles it is more probable that ¢/¢e = 0 at ¢y =
5236, the volume fraction in cubical packing.
nposing this condition makes & = 0.222 and the
yo equations become n/n = 1 4- 2.5C; + 5.123C,*
- 9.99C,% and ¢/¢ = 1 — 2.5C, + 1.127C:?
spectively.
DeBruijn’s and Vand’s equations both represent
tempts to fit the complete concentration range.
ecently Simhaf® and more recently Kynch!® have
:duced that the constants of the higher power
rms must change with concentration. The equa-
ons attributed to Simha in the table are expan-
ons of one of his theoretical equations (7a)
licable at low concentrations, up to Cy = 0,065.
his equation contains a parameter defined by the
lationship f? = 8Cmpax. Where Cmax. may be either
1at corresponding to cubical packing, Cy = 0.5236
f = 1.61), or to close packing, Cy = 0.74 (f = 1.81).
1 evaluating the constants for Table I cubical
acking has been assumed. In his discussion Simha
otes that to fit experimental data over the
ncentration range, f must actually change from a
alue around 1.3 to less than 2. His final evalua-
on thus becomes semi-empirical.
Kynch’s derivative differs from Simha’s but the
et result is about the same. Kynch states that a
opular value for the second order constant in the
iscosity equation is 6.25. This makes the second
rder constant zero in the fluidity form. Accord-
\g to Simha’s treatment the second order constant
25 is possible, requiring only that f be given the

alue 34/2.5 or 1.357. Kynch’s observation|is of -

iterest in the light of statistical analyses to be pre-
:nted in the next section of this paper.

The empirical equation due to Arrhenius!! is usu-
lly written in /%0 = kC,. For inclusion in the
ible it has been rewritten as n/no = €%, expanded
3 the series #/n0 = 1 + kCy + kC.2/2! 4+ kQ,3/3!
- ..., and the constant & arbitrarily assigned the
alue 2.5.

_The second and third order constants in the em-

irical equation assigned to Robinson in Taple I

re averages based on three extrapolated experi-

(10) G.J. Kynch, Proc. Roy. Soc. (London), A237, 90 (1956).
(11) 8. Arrhenius, Z. physik. Chem., 1, 285 (1887).

ap-

1 —2.5Cy + 3.125C,* — 2.60C,*...
1-—2.5C, —0.92C,* 4+ 4.0C3 ...
1-2.5C,+1.65C,* —1.0C,%...

order coefficients change with concentration. The equations

mental values of sediment volumes for glass spheres,
1.77, 1.81 and 1.88, given by him. The reciprocals
of these numbers, 0.565, 0.553 and 0.532, compare
well with the volume fraction of uniform spheres in
cubical packing, (4/3 r%)/(8r%) or 0.5236.

Review of Experimental Results

Viscosity measurements which are sufficiently
extensive and rigorous for mathematical analysis
and on systems acceptable as models of suspensions
of spherical particles are scanty. No data yet re-
ported are adequate in all respects. This arises in
part from uncertainties as to concentration and
shape in molecular and colloidal solutions, and in
part from uncertainties in correcting results on visi-
ble particles for effects due to size alone. The ex-
periments here considered were selected for various
reasons, some merely because prominence previ-
ously given them demands their inclusion. In
every case the original data were carefully scru-
tinized and recalculated. Insofar as justified,
statistical methods were applied since the purpose
was refinement of precision in establishing the con-
stants in the type equation ¥ = 1 4+ aC, + bC:?
+cCi¥4....

Bancelin’s Experiments on Gamboge Sols.—
Bancelin’s experiments!? are the first in point of
time and apparently were performed very care-
fully. He prepared monodisperse suspensions of
gamboge by centrifugation (the method of Jean
Perrin), and for each fraction determined viscosities
at various concentrations. Bancelin’s object was to
test the Einstein equation which as then published
wasn/n = 1+ Cy. He obtained as his average re-
sult 5/ = 1 + 2.9C,.. He therefore wrote to Ein-
stein who informed him that the equation should
have been n/9 = 1 4+ 2.5C,. Bancelin’s paper
gives values for a suspension containing particles
0.30 u-in diameter, at six concentrations between
0.0024 and 0.0211 ml. per ml. Least squares analy-
sis of these data, using the type equation ¥ = k +
aCy, gives

n/m = 0.9994 + 2.715C, (S.E.E., 0.00069)
and
é/d0 = 1.0000 — 2.549C,  (S.E.E, 0.00052)

Here, the numbers in parentheses are the standard
errors of estimate of Y, a convenient measure of the

(12) M. Bancelin, Compt. rend., 162, 1382 (1911).
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Fig. 1. —Fluidity—concentration plots for suspensions of 125-2
suspensions (Couette) indicated by open triangles, for non-sti

tion is described in the text.

- fit.2* These results show that to a close approxi-
matiop, for these data k = 1, a necessary check, and
that the experimental first order constant is much
closer to0 2.5 than to 2.9 as reported by Bancelin and
repeatedly quoted since. .

The data cover a low concentration range. Nev-
ertheless, the measures of deviation given above in-
dicate that over this concentration range the fluidity

function is the more linear.

' It is possible that for Bancelin’s gamboge the ex-
perimental first order constant was actually about
2.55, considering that errors in effective volume con-
centration, due to slight departure from the
spherical shape, for example, would be positive. 1f
the concentrations be corrected accordingly by the
factor 2.55/2.5, the data are now fit by

2/n0 =1 + 2.5C, + 6.75C,? (S.E.E,, 0.00053)
and ' ,
¢/¢o = 1 — 2.5€, — 0.1C,*  (S.E.E, 0.00052)

Experiments on Suspensions of Glass Spheres.—

Suspensions of glass spheres have been used as model
systems by Eirich, Bunzl and Margaretha,!4 Eirich

(13) The standard error of estimate is the square root of the mean

of the squared deviations, Sy = ‘\/ 2d?/N. Other measures of the fit,
mean deviations, standard deviations, and coefficients of correlation,
agreed with the standard errors of estimate.

%%’

05u diameter glass beads, data by Vand.®® Points for stirred
ed suspensions by open squares. The method of extrapola-

and Goldschmidt,'® Vand,*® Robinson, and Eveson
and Whitmore (ref. 10).

The experiments by Eirich, et al., which were on
yeast cells and mushroom spores as well as glass
beads, are generally credited with establishing the
first order constant within limits of +0.3 by use of
capillary viscosimeters, and within limits of +0.2 by
use of the Couette viscosimeter. The glass spheres
used by Eirich, et al., were from 0.0125 to 0.0205
cm. in diameter. Subsequent to their experiments
it has been pointed out by Vand (vide infra) that
use of particles of this size requires appreciable cor-
rections of both Cy and ¢/¢0 — 1, by factors which
are related to the dimensions. of the viscosimeters.
Such corrections cannot be applied with assurance
to Eirich’s capillary data, but they can be applied
to the Couette data, and the Couette data are for a
low concentration range, Cv = 0.01 to 0.08, not
adequately covered by other workers with glass
beads. A large scale plot of these data discloses
that they do not extrapolate to ¢/¢o = 1 at C = 0;
and least squares analysis indicates that the Cy
values are too low by the constant amount ACy =

(14) F. Eirich, M. Bunzl and H. Margaretha, Kolloid. Z., 74, 276
(1936).

(15) F. Eirich and O. Goldschmidt, ibid., 81, 7 (1937).

(16) J. V. Robinson, (a) Tuxs_JounuAL, 53, 1042 (1949); (b) 65,
455 (1951). ' ’



10, approximately. The C, values adjusted by
gmount and the observed ¢/¢o — 1 values were
scted by the use of formulas later developed by
86 Thus corrected the data are fit by the
tion ¢/¢0 = 1 — 2.50C, + 0.95C.%, S.E.E.,
15. The data as given are fit by the equation
=1 — 239, + 3.29C,2 S.E.E., 0.0018.
T'hese experiments by Eirich, et al., provide a sec-
ond close check of the first order constant, 2.5.
" yand® used the same glass beads as Eirich, et
- il., loaned to him by Prof. Eirich, but he suspended
‘them in a more viscous liquid, made other refine-
“ments in technique, and extended the concentration
“range almost to saturation. Vand gives an average
“diameter of 0.013 cm. for these beads. Like Eirich,
et al., he used two Ostwald viscosimeters, of different
bore diameters, and a Couette viscosimeter,

“
e

Couette machine only at concentrations of 3 %

and higher.

Vand multiplied all of this Cy and ¢/
‘'values by specific correction factors for each instru-
ment, and finally combined his corrected data s a
composite plot. His final equation is designed to
fit a smooth curve through these points. Inclu-
sion of the Couette results has been criticized| by
Kynch® on theoretical grounds. The data them-
selves, however, provide sufficient reason for their
reexamination.  With both the Couette and Ost-
wald instruments, at concentrations beginning

immediately above C, = 0.35, different viscosities .

were obtained depending on whether the suspen-
sions were stirred or not. These known deviations
are greater than the total deviations at lower con-
‘centrations. ‘This fact is itself sufficient to exclude
most of the Couette data, and some of the Ostwald
data, or at least to diminish the weight to be given
these data. It is noted also that Vand’s corrected
values for his two Ostwald viscosimeters fall more
nearly on smooth curves if plotted separately than

if combined. This was confirmed by comparison .

of the fit of second order equations obtained by least
squares analysis. The deviation of the two curves
: $du(>lates a more empirical analysis than used by

and. :

A method of blind extrapolation in the direction
of zero corrections is illustrated by Fig. 1. Here
smooth curves through the original uncorrected
Ostwald points are drawn in the two receding verti-
cal planes, and the corrected Couette values and
the extrapolated Ostwald curve are shown in| the
plane of the paper. The positions of the receding
vertical planes are determined as follows: at Cy/=0
by requiring that the first order constants, 2.445 and
2:405, found in the usual way by plotting (¢/do —
1)/Cy against Cy, shall extrapolate to 2.5 for an in-
finite capillary; and at Cy = 0.35 by placing the ex-
perimental Ostwald ¢/¢s — 1 values, 0.760 |and
0.680, and the corrected Couette value, 0.820, on &
straight line. The two Ostwald curves thus pl iced
in space and extrapolated into the plane of the paper
give a third curve for which the corrections are cer-
tainly reduced.

The assumptions involved are: (1) That| the
first order constant is in fact 2.5. This is supported
experimentally by Bancelin’s and Eirich’s results.
(2) That the Couette fluidity used at Cv = 0.35 is

approximately correct. This seems justified within
limits by the apparent absence of stirring errors at
this concentration, and by the fact the Couette
corrections are in any case small (roughly one-
fifth to one-tenth of the Ostwald corrections).
(3) That the effective or total corrections vary not
only with bore diameter, but also with concentra-
tion. This is supported by the observations that
Vand’s /¢ = 1 corrections, for wall effects, are in
fact averages of values which apparently vary, ap-
proximately linearly, by as much as 129, over the
range Cy = 0.05 to 0.35.

The extrapolations actually were performed ana-
lytically. Interpolated fluidities for the two Ost-
wald viscosimeters at concentrations increasing by
5%, were taken from large.scale plots, and also cal-
culated from the second order equations fit to the
original data by least squares. Using the analyti-
cally interpolated Ostwald values and referring the
extrapolation at Cy = 0.35 to the corrected Couette
values (Fig. 1), the extrapolated curve is fit over the
range Cy = 0.05 to 0.35 by the equation’

é/d0 = 1 — 2.5C, — 0.11C:* + 1.6C,*

Referring the extrapolations to the uncorrected
Couetté values the equation is

é/do = 1 — 2.5Cy — 0.08C\? + 1.9C.3

The graphically interpolated values give essentially
the same constants. The uncertainty in the second
order constant is =0.10, approximately. Although
the type equation ¥ = 1 = 2.5Cy + bC? + cC,?is
used here, the extrapolated curves are fit equally
well, over most or all of the range Cv = 0.05 to 0.35,
by equations of the form ¢/¢ = 1 — 2.5C, +
4 [N

While the above described extrapolations, based
on the uncorrected data, seem to avoid many as-
sumptions, they also include a certain error. Thisis
because in the polynomial equations used the con-
centration and all multipliers of it are involved as
powers higher than the first. It is noted, however,
that the C. corrections (multipliers) as calculated
by Vand are less than half his ¢/¢o — 1 corrections
for wall effects; and it is noted also:that it is only
in the latter and not in the concentration correc-
tions that any reason for variation with concentra-
tion is apparent. Accordingly, Vand’s corrected
C, values were combined with his uncorrected
8/60—1 values, and the various manipulations
repeated. Referring the extrapolations to the cor-
rected Cy and corrected 6/6 — 1 Couette values at
C, = 0.35, for the range Cy — 0.05 to 0.35 the
equation obtained is

¢/¢.) =1- 2-5Cv + O-OOCV’ + 1-4(}v8

Referring the extrapolations to the corrected Cyand
}mcorrected &/ — 1 Couette values the equation
is

/¢ = 1 — 2.5Cy + 0.11C% + 1.5C?

The uncertainty in the second order constant is
0.10, approximately. i

The foregoing calculations all indicate that within
the apparent accuracy of the data, in an equation of
the form ¢/¢o = 1 — 2.5Cy + bCy* + cCv® + .. ., the
second order constant “b” is numerically small, and
may be zero.
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" Fig. 2.~Fluidity—concentration plot for suspensions of
glass beads, 10-30 diameter, in no. 30 motor oil (open cir-
-cles), no. 50 motor oil (closed circles), and castor ol (oper
triangles). Data are by Robinson. ,

order constants obtained graphically vary from 2.95
to 4.29, depending on particle size and temperature.
Odén used two size fractions, containing particles
about 10 myu and 100 my in diameter, and tempera-
tures from 5 to 40°. It is found that plots of the
first order constants against temperature extra-
polate to 2.5 at 95°, approximately, for both sizes of
particles. Except in this indirect way Odén’s re-
sults contribute little as a check of the Einstein
equation.

The temperature extrapolations are of interest in
connection with shells of bound water, postulated
by Hatschek!® to explain the deviations noted.
The implication above is that the shells disappear
at 95°.. It seems plausible, however, that shape
factors are involved, the particles becoming more

spherical as they approach the melting point.

Milk Fat, Latex, and  Asphalt Emulsions.—
Data on suspensions of milk fat (cream) variously
diluted with fat-free milk serum, by Leviton and
Leighton, are plotted in Fig. 3. One of their four
sets of data has been omitted because the viscosity

of the serum was made
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o 1 l v !

T T much higher than.for the
other three by addition of
cane sugar. The curve
drawn through the points

* (Fig. 3) is that determined
by a theoretical equation®

-1 - derived by the authors.

This equation takes ac-

count of the fact that milk

fat is liquid,>* by making
use of Taylor’s correction
of Einstein’s constant 2.5 for
sympathetic flow inside
liquid ‘particles. This cor-
rection lowers the theoreti-
! cal first order constants to

0.4
Cv (ml/ml)

Fig. 3.—Fluidity-concentration plot for milk fat suspensions in fat-free milk serum.
Three sets of data are by Leviton and Leighton.? The solid curve drawn through the
points is that determined by the theoretical equation devi loped by these authors.
Compare the experimental points with those for rubber latex! Fig. 4. .

Robinson used beads 3 to 30 x in diameter, an
order of magnitude smaller than Eirich’s and Vand’s
beads, suspended both in oils’®* and in water-
glucose solutions.’® He used a Couette viscosim-
eter. The fluidity plot for his oil suspensions is
shown in Fig. 2. Corrections according to Vand’s
formulas have been applied, but practically the
identical curve is given by the uncorrected data.
Both this plot and the similar plot for the water-
glucose suspensions confirm the general shape of the
Vand extrapolated and Couette curve of Fig. 1, and
particularly the final intercept in the neighborhood
of Cy = 0.5236. _It will be recalled that Robinson’s
sediment volumes, obtained by centrifugal packing,
also indicate approximately this value. -

-Sven Odén’s Experiments on Sulfur Sols.—
Sven Odén’s viscosity measurements on sulfur
sols’ do not support statistical analysis. The first

.(17) 8. Odén, Z. physik. Chem., 80, 709 (1912); *‘Der Kolloide
Schwefel,” Nova Acia Regiae Soc. Sci. Upsaliensis, (4).3 (1913).

0,6

0.8 . 2.44, 2.45 and 2.39, respec-

tively, for the three sets of
data; the average experi-
mental value is 2.44, cor-
responding to a linear in-
tercept at Cy 0.41 as
drawn. Although the di-
mensions of the viscosimeters are not given, and
therefore correction by Vand’s formulas is not at-
tempted, the particles are so small these correc-
tions would be negligible in any case. This is con-
firmed by Leviton and Leighton’s comparison of
two emulsions containing particles 3 x and 0.7 p in
diameter, for which exactly the same viscosities
were obtained.

These data again confirm the Einstein first order
constant, as well as Taylor’s correction, but they
indicate a final intercept well beyond Cy = 0.5236.
Since milk fat particles are liquid as well as spherical
they should be sufficiently deformable to roll, one
over the other, and therefore flow past the concen-
tration corresponding to cubical packing is to be

(18) E. Hatschek, Kolloid Z.,7, 301 (1910); 11,280 (1912).

(19) A.Levitonand A. Leighton, THis JOURNAL, 40, 71 (1936).
' (20) Expanded as a polynominal this equation is-¢/¢o = 1 — 2.44W
+ 2.98W3 — 2.4W3 + ..., where W = Cy + Cv*/3 4 Cy''/s,

(21) .Viscosity 14 centipoises. . BRI
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Fig. 4.—Fluiditg'-eoncentration plots for rubber latex (main
%{.hodes and Smith?; asphalt data by Eilers.2¢ Indepen

expected. Cream can be concentrated to 7:
74% by centrifuging at room temperature, and
actual intercept in this neighborhood seems possible.

Fluidity plots for two natural rubber latexes|and
for two asphalt emulsions, derived from data by
Rhodes and Smith,?? and Eilers,?® respectively, are
shown in Fig. 4. Both of these sets of data have
been used in connection with derivations of |vis-
cosity equations. In Fig. 4 the latex data| are
plotted as given by the authors; since a-Hoeppler
viscosimeter was used and Vand’s corrections there-
fore do not apply. The first order constant cal-
culated for the latex curve is about 2.8, and
final intercept is in the neighborhood Cy = 0.74.
Both results are reasonable. Latex particles are
often not spherical, may be pear shaped, and
even have tails: therefore, the first order cons
could well include a shape factor. Latex pa
also are plastic and deformable.- These experi
are, therefore, of little value as a check of| the
Einstein equation. ' R

The asphalt data, inserted box of Fig. 4, were first
corrected by use of Vand’s formulas. The correc-
tions are necessarily approximate. Eilers’ particle
sizes range from less than 1.6 x t0 9.7 u in diameter:
a diameter of 5.6 p based on the average particle
volume was used. Eilers gives three capillary
diameters and apparently reports average viscosi
ties obtained with the three instruments: there
average Cy and ¢/¢e — 1 corrections were appplied.

to

Thus corrected & first order constant of 2.3, ap-

proximately, is indicated. This is impossible since
*the viscosity of the asphalt used is so high that Tay-
lor’s correctioun for sympathetic flow, as applied by
Leviton and Leighton, is insignificant. Remember-
(22) E. Rhodes and H. F. Smith, J. Rubber Research Inst. M

9, 171 (1939).
(23) H. Eilers, Kolloid. Z., 97, 313 (1941).

(ml./ml.).

lot) and asphalt emulsions (inserted box). Latex data are by
ent sets pf data are indicated by diﬁerﬁnt types of points.

ing the errors involved, for the plot shown the ¢/¢o
—1 values have been again multiplied by such-a
factor as to make a = 2.5; this makes Crmar, = 0.56,
approximately. No really accurate -interpretation
of these data can be attempted because of the scar-
city of points at low concentrations, which makes it
impossible definitely to establish a first order con-
stant. : :

. Discussion
. Limiting Equations, Viscosity .and Fluidity.—
It appears that for dilute suspensions meeting the
requirements of Einstein’s original derivation, the
equation ¢/¢p = 1 — 2.5Cy (1).i8 a closer approxi-
mation than g/ = 1 4+ 2.5C, (II). . Within the
limits of accuracy of available measurements, at low
and even moderate concentrations, low order terms
in Cy higher than the first tend to vanish when the
fluidity function is used. - Thus, the limiting fluidity
equation describing the flow of suspensions of rigid
spheres appears to be I, as given-above. The limit-
ing viscosity equation appears to be not II but, the
reciprocal of I;' ’7/ =14+ 2.5C, + 6.25C:* + . .
(III). ‘This last compares with Einstein’s original
complete equation, n/ne = 1 + 2.5Cy + 4.0Cv* +

Complete Equations.—The distinction between
limiting equations expanded to include hydro-
dynamic effects not considered by Einstein, and
‘equations expanded merely to cover wide concen-
'tration ranges is not always clear. In some deriva-
tions the added effects have been imposed on II,
not on IV. Such derivations nullify the basic
hydrodynamics considered. by Einstein, and are
inadequate to the extent II is inadequate.

Empirical equations of the form ¢/¢e = 1 —
2.5Cy + mC,? — nCy?*e (VI), where p is at least 5,
can be made to fit experimental fluidity plots over



the entire range of fluidities from 1 to zero. For
Vand’s extrapolated and Couette curve (Fig. 1) the
equation ¢/¢p = 1 — 2.5Cy + 11C\® — 11.5C" is
quite satisfactory. Apparently the first two terms
suffice for flow subject to classical hydrodynamic
analysis. The third and fourth terms can be inter-
preted as due to appearance of effects resulting
from the near approach of particles. The contribu-
tion of the third term becomes significant at Cy =
0.25, approximately, at which concentration the
least distance between spheres in cubical array is
0.218 times their diameter. The contribution of
the fourth term becomes significant at Cy = 0.45,
approximately, at which the separation distance is
only 0.05 times the particle diameter. These transi-
tion concentrations may mark in turn the onset of
inhibition of rotation and of interlocking.

Equations such as VI, in which the last term is

negative and increases rapidly in absolute value in a
certain concentration range, can be adjusted to
make ¢/¢o = 0 at and above any specific concentra-
tion, e.g., Cy. = 0.5236; polynomials in which the
last term or terms are positive give fictitious posi-
tive fluidities at high concentrations; logarithmic
sries give fluidities which approach zero asymptot-
ically. In neither of the last two cases is the flow
behavior indicated in accord with the facts.
" Correction Factors.—The various corrections
evaluated and applied directly by Vand for his
glass beads, and implicitly involved in the extrap-
olations of his data‘described here, are in general
numerically unimportant with true colloidal sys-
tems, e.g., gamboge, latex, sulfur sols, mushroom
spores, fat suspensions, and protein solutions.
If for visible particles, such as glass beads, the cor-
rections are to a certain degree inadequate, this
certainly may be due in part to the several assump-
tions and approximations necessary in their evalua-
tion.. It also may be due to omission of still other
types of corrections.. Correction of Cy for real or
presumed shells of bound water, for example, would
be comparable with the aggregate of the other Cy
corrections used by Vand.

Applications.—The tangent to ¢/¢e vs. Cv plots
C. = 0 usually can be determined graphically with
considerable accuracy. The slope of this line, the
reciprocal of its intercept at ¢/¢o = 0, is the first
order constant in the equation &/do =1 — aCy +

This constant is 1dentical with the #ntrinsic
viscossty. Its evaluation by using fluidity rather
than viscosity data is the more accurate to the ex-
tent the fluidity-concentration relationship is the
more linear. . :

Since it seems established that for rigid spherical

-(1951)) is only one of many which were omitted.

particles the initial slope intercept should fall at
Cy = 0.4, as required to make ¢ = 2.5, and since it
appears that the actual final intercept should be in
the near neighborhood of Cy = 0.5263, the volume
fraction of spheres in cubical packing, it follows
that if for a given set of data a suitable multiplier of
Cy, the dry volume fraction, will give a plot with
these intercepts, then the particles must be spheres
and the multiplier equal to V, the voluminosity.

Voluminosity, a term proposed by Bredee,* is
commonly defined as the ratio of the effective or
hydrodynamic volume of a dispersed particle to the
dry volume of contained colloid. As such it may
include shape factors as well as corrections of the
volume for hydration, solvation, and for electrovis-
cous effects (cf. ref.s). For spheres the shape fac-
tor is 2.5/2.5 or 1, making V in this case a volume
correction only.

DISCUSSION

R. H. OrrewiLL (Cambridge University).—I think it is
important to stress that one has to be careful about applying
such viscosity—concentration relationships to systems which
contain charged particles in solutions of low electrolyte con-
centration. For example, in some recent work of Professor
Overbeek and myself on very concentrated sols of silver
jodide, containing near spherical particles- of radius 250A.,
the coefficients of C.2 and C® were found to vary consider-
ably with rate of shear and the electrolyte concentration of
the suspending medium.

'I‘.h F. Fonn.-—]i{.eference to th(lelglectroviscous eﬁ::t is xln;.‘de
in the paper. It is agreed that in many systems large
apparent changes in V' can be brought about by changes in
the ionic environment. Such changes sre insignificant for
the systems here discussed.

J. G. BropNYAN (Rohm and Haas Co.)—Is there any
reason why you ignored Moon?'s equation which was
derived using a functional method?

T. F. Forp.—Mooney’s equation (J. Céll. Sci.,I t6, lflig
cou
be included in Table I between Vand’s and Simha’s equa-

tions. The expanded forms are

n/ne = 1 + 2.5Cy + (3.125 + 2.5k)Cy + --- and
&/do =1 —2.5C, + (3.125 — 2.5k)Cv2 + -+

Mooney sets the value of &, for monodisperse systems, only
roughly between the limits 1.35 and 1.91, the reciprocals
of the volume fractions of uniform spheres in close packing
and cubical packing, respectively. The actual value to be
used is left for experimental determination. To fit Vand’s
data he makes k = 1.43, and to fit Eiler’s data on (poly-
disperse) asphalt he makes k = 0.75. In any case it will be
seen that Mooney’s equation also is more nearly linear in
the fluidity form. It was omitted in the interest of brevity
and because it would contribute little to the basic conclusion.
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